R-Tree

• An R-tree is a depth-balanced tree
 – Each node corresponds to a disk page
 – Leaf node: an array of leaf entries
 • A leaf entry: (mbb, oid)
 – Non-leaf node: an array of node entries
 • A node entry: (dr, nodeid)
$m=2, M=4$

\begin{align*}
&[1,2,5,6] \quad [3,4,7,10] \quad [8,9,14] \quad [11,12,13] \\
\end{align*}
Properties

• The number of entries of a node (except for the root) in the tree is between \(m \) and \(M \) where \(m \in [0, M/2] \)

 – \(M \): the maximum number of entries in a node, may differ for leaf and non-leaf nodes

 \[M = \left\lfloor \frac{\text{size}(P)}{\text{size}(E)} \right\rfloor \]

 \(P \): disk page \(E \): entry

 – The root has at least 2 entries unless it is a leaf

• All leaf nodes are at the same level

• An R-tree of depth \(d \) indexes at least \(m^{d+1} \) objects and at most \(M^{d+1} \) objects, in other words,
 \[\left\lfloor \log_M N - 1 \right\rfloor \leq d \leq \left\lceil \log_m N - 1 \right\rceil \]
Search with R-tree

• Given a point q, find all mbbs containing q
• A recursive process starting from the root
 $\text{result} = \emptyset$
 For a node N
 if N is a leaf node, then $\text{result} = \text{result} \cup \{N\}$
 else // N is a non-leaf node
 for each child N' of N
 if the rectangle of N' contains q
 then recursively search N'
Time complexity of search

- If mbbs do not overlap on q, the complexity is $O(\log_m N)$.
- If mbbs overlap on q, it may not be logarithmic, in the worst case when all mbbs overlap on q, it is $O(N)$.
Insertion – choose a leaf node

• Traverse the R-tree top-down, starting from the root, at each level
 – If there is a node whose directory rectangle contains the mbb to be inserted, then search the subtree
 – Else choose a node such that the enlargement of its directory rectangle is minimal, then search the subtree
 – If more than one node satisfy this, choose the one with smallest area,

• Repeat until a leaf node is reached
Insertion – insert into the leaf node

- If the leaf node is not full, an entry [mbb, oid] is inserted
- Else // the leaf node is full
 - Split the leaf node
 - Update the directory rectangles of the ancestor nodes if necessary
Insert object 15

\[m=2, \ M=4 \]
Insert object 16

$m=2, M=4$

[1,2,5,6][3,4,7][10,16] [8.9.14][11,12,13,15]
Split - goal

• The leaf node has M entries, and one new entry to be inserted, how to partition the $M+1$ mbbs into two nodes, such that
 – 1. The total area of the two nodes is minimized
 – 2. The overlapping of the two nodes is minimized

• Sometimes the two goals are conflicting
 – Using 1 as the primary goal
Split - solution

• Optimal solution: check every possible partition, complexity $O(2^{M+1})$

• A quadratic algorithm:
 – Pick two “seed” entries e_1 and e_2 far from each other, that is to maximize
 area(mbb(e_1,e_2)) – area(e_1) – area(e_2)
 here mbb(e_1,e_2) is the mbb containing both e_1
 and e_2, complexity $O((M+1)^2)$
 – Insert the remaining $(M-1)$ entries into the two groups
Quadratic split cont.

• A greedy method
• At each time, find an entry e such that e expands a group with the minimum area, if tie
 – Choose the group of small area
 – Choose the group of fewer elements
• Repeat until no entry left or one group has $(M-m+1)$ entries, all remaining entries go to another group
• If the parent is also full, split the parent too. The recursive adjustment happens bottom-up until the tree satisfies the properties required. This can be up to the root.